L. Sahline

Devoir de Contrôle N°5

A.S:2009/2010

Classes 2sc

G1 Durée: 60 mn

classe:..... N°..... Nom et prénom:.....

Exercice N°1:(4 pts)

Pour chacune des questions suivantes une seule réponse proposée est exacte.

L'exercice consiste à cocher la réponse exacte sans justification

1/ Soit ABC un triangle rectangle en A tel que BC = 8 et $\hat{C} = \frac{\pi}{6}$

 \square AB=4

 \Box AB = $4\sqrt{3}$

 \Box AB = $8\sqrt{2}$

2/ Soit $A = \cos(\frac{4\pi}{13}) + \cos(\frac{9\pi}{13}) + \sin(\frac{\pi}{2} - x) + \cos(\pi - x) + \cos(\frac{8\pi}{12})$ pour tout $x \in [0, \pi]$ on a alors:

 \Box A = 0

 \square A = 1

 $\square \quad A = -\frac{1}{2}$

3/ On donne $f(x) = -\frac{1}{2}x^2 + 2$ on a alors pour $x \in [-1, +\infty[$

☐ f est croissante ☐ f est décroissante

f est constante

4/ P la parabole d'équation $y = -\frac{1}{2}x^2 + 2$ alors P de sommet

 \square S($-\frac{1}{2}$,2) \square S($\frac{1}{2}$,-2)

S(0,2)

Exercice N°2:(5 pts)

Pour tout x de $[0,\pi]$ on donne $f(x) = -2\sin^2(x) + 3\sin(\frac{\pi}{2} - x) + 3$

1/ Calculer: f(0) et $f(\frac{\pi}{3})$

2/ Montrer que $f(x) = 2\cos^{2}(x) + 3\cos(x) + 1$

3/ Résoudre dans $[0,\pi]$ l'équation : f(x) = 0

Exercice N°3:(4 pts)

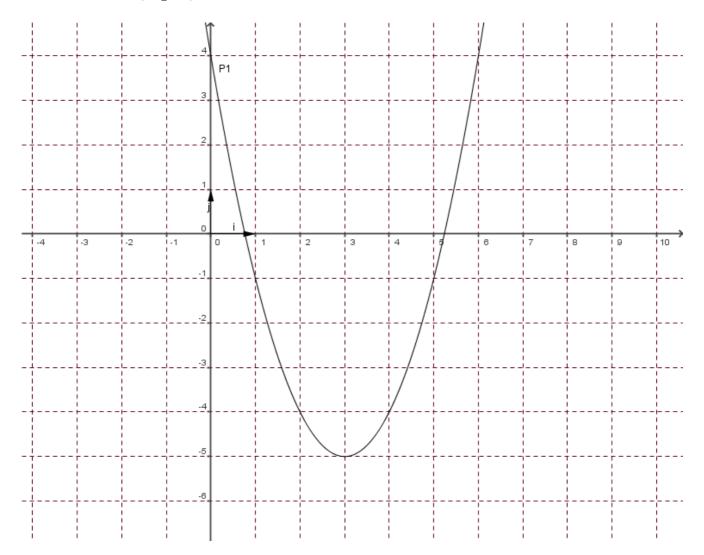
Soit ABC un triangle tel que AB = $2\sqrt{2}$; AC = 5 et $A = \frac{\pi}{4}$

1/ Montrer que BC = $\sqrt{13}$

2/ Calculer S l'aire du triangle ABC

3/ En appliquant la loi de sinus donner une valeur approché de l'angle en B à 1 degré près.

Exercice N°4:(7 pts)



- I/ La parabole P₁ est la courbe représentative d'une fonction f
 - A l'aide du graphique
 - 1) Préciser le sommet S_1 et l'axe de la parabole P_1
 - 2) Donner les variations de f
 - 3) Donner l'expression de f
- II/ On donne la fonction g définie sur \Box par $g(x) = -\frac{1}{2}(x-3)^2 + 1$
 - 1) Tracer P2 la courbe représentative de la fonction g dans le même repère ci-dessus
 - 2) Préciser a l'aide du graphique les points d'intersection de P_1 et P_2
 - 3) Résoudre graphiquement l'inéquation : $f(x) g(x) \le 0$

